『大学新入生のための力学』 正誤表(初版 1~4 刷用) 2017.4.12

頁	行	誤	正
1	本文↓4	知らない土地は	知らない土地へ
10	章末問題 4	体積の単位	面積の単位
13	傍注↑1	p.56	p.50
18	↓ 4	作用線	作用点
18	例題 2.3 ↓1	合成は2力の作用線	合力は,2力の作用点
24	↓ 3	方向の分けて	方向に分けて
28	章末問題 3.	最終行に追加	図2.22bで2本のばれば束ねてあり、2本のばわの 長さば常に等しいとみなすものとする.
34	↓ 4	2) スカラー倍等	2) スカラー倍
38	式(3.2.33)	$+(A_xB_y-A_yB_x)$ j	$+(A_xB_y-A_yB_x)$ k
38	公式 3.7↓2	$+(A_xB_y-A_yB_x)$ j	$+(A_xB_y-A_yB_x)$ k
43	↑ 1	固定点C	固定点O
44	側注	couple	couple of forces
52	↑ 3	AB の中点	AC の中点
62	公式 5.1↓3	$x = x_0 + v_0 t + \frac{1}{2} t^2$	$x = x_0 + v_0 t + \frac{1}{2} a t^2$
66	式(5.2.17) ↓ 2	$=\frac{d^2x}{d^2t}i + \frac{d^2y}{dt^2}j + \frac{d^2z}{dt^2}k$	$=\frac{d^2x}{dt^2}i + \frac{d^2y}{dt^2}j + \frac{d^2z}{dt^2}k$
75	傍注↓5	equaion	equation
77	式(6.2.6)	$ma_x = F_x$, $ma_x = F_x$, $ma_x = F_x$	$ma_x = F_x$, $ma_y = F_y$, $ma_z = F_z$
86	問 22↓1~2	水平方向から 60° および 45°	水平方向から 45° および 60°
88	↑ 4	$(mg \sin\theta, mg \cos\theta)$	$(mg \sin\theta, -mg \cos\theta)$
131	↑4~5	F_{\parallel} はその方向に動かないから仕事をしていない. F_{\perp} だけが仕事をしたと考えてよく	F_{\perp} はその方向に動かないから仕事をしていない. F_{\parallel} だけが仕事をしたと考えてよく
159	式(13.4.16)	$(yp_z - zp_y, zp_x - xp_z, xp_y - xp_x)$	$(yp_z - zp_y, zp_x - xp_z, xp_y - yp_x)$
159	II	$(yF_z - zF_y, zF_x - xF_z, xF_y - xF_x)$	$(yF_z - zF_y, zF_x - xF_z, xF_y - yF_x)$
160	公式 13.3 ↑ 4	$N \cdot s^2$	N·m·s
170	補足↓2	重力の考慮して	重力を考慮して

171	1 4	全運動量は保存される.	全角運動量は保存される.
178	(15.2.9)	$I_z \frac{d^2 \theta}{dt^2}$	$I\frac{d^2\theta}{dt^2}$
189	問 6	p.37	p.27
190	問 32↓2	$rac{1}{2}mv_1^2$ 一方,	$rac{1}{2}mv_1^2$. 一方,
199	↓ 3	制御距離	制動距離
IJ	↓9	$(2.4 \times 10^3 \times 9.8 \times \frac{1}{2} + 7.2 \times 10^3)$	$(2.0 \times 10^3 \times 9.8 \times \frac{1}{2} + 7.2 \times 10^3)$
"	↓ 10	$= 3.4 \times 10^6 \text{J}$	$= 3.1 \times 10^6 \text{J}$
IJ	↓ 11	$\frac{3.4 \times 10^6 \text{J}}{210 \text{s}} = 1.6 \times 10^4 \text{W}$	$\frac{3.1 \times 10^6 \text{J}}{210 \text{s}} = 1.5 \times 10^4 \text{W}$
201	↓ 9	$\frac{4}{3}R$	$\frac{5}{3}R$
IJ	↓ 14	$2.5 \times 10^{-3} \text{kgm}^2/\text{s}$	2.5 kgm ² /s
204	1 2	$\frac{d}{dt}e^X = e^X$	$\frac{d}{dt}e^t = e^t$