『数学史 数学 5000 年の歩み 』 初版 1,2 刷 正誤表

(2015年10月15日現在)

頁	 行	誤	正
p.4	13	・・・を導入すると,矛盾のない	··· を導入すると , 二元体 F ₂ という矛盾の
			ない・・・
"	17 ~ 23		1 欄外参照
p.30	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{1}{2} + \frac{1}{8} + \frac{1}{16} \cdot \frac{1}{2} + \frac{1}{16} \cdot \frac{1}{4} + \frac{1}{8} + \frac{1}{16}$
p.71	3	$igg rac{1}{2} + rac{1}{8} + rac{1}{16} rac{1}{4} + rac{1}{8} + rac{1}{16} \ igg $ (「・・・・ に見られるものである .」の後)	2 8 16 <mark>2 16 4 8 16 </mark>
p.11	3		K.Muroi," Babylonian Number Theory and
			Trigonometric Functions: Trigonometric
			Table and Pythagorean Triples in the
			Mathematical Tablet Plimpton322",
			Springer Proceedings in Mathematics &
			Statistics, Vol.39, 2013, pp.31-47.
p.73	9	BM 85196 no.16	BM 85196 no.9
p.96	命題 5	線分の上の正方形に等しい	線分の半分の上の正方形に等しい
p.107	2 .45		2欄外参照
p.111	冒頭文	qui dit mathematique,	(Depuis les Grecs, qui dit mathématique,
		dit demonstration)	dit démonstration)
p.125	《問 3.3》	$4(2-\sqrt{2})$	$4\sqrt{2-\sqrt{2}}$
p.128	12	「公理論的論証数学」が完成した	「公理論的論証数学」がほぼ完成した
"	26 ~ 28	肉眼で見える星の明るさで1等星から	肉眼で見える 800 以上の星のカタログを
		6 等星までに分け,800 以上の星のカタ	作り,星の明るさで1等星から6等星まで
		ログを作り,そして数学への最大の	に分け, そして数学への最大の貢献である
		貢献である 「弦の表」を作った.	「弦の表」を作った.
p.130	20	両者を [合わせたもの] <mark>を</mark> 作る .	両者を [合わせたもの] 作る .
p.143	2 4.8	アル=フワリズミー	アル=フワーリズミー
p.155	最下行	ヴィエト(Françoi Viéte;・・・)	ヴィエト (François Viéte; …)
p.164	《問 4.9》	$\omega = \frac{-1 + \sqrt{3} \cdot i}{2}$	$\omega = \frac{-1 + \sqrt{3}i}{2}$
p.178	6	いたと見ている ().	いたと見ている.
p.187	4	『曲線理解のための無限小解析入門』	『曲線理解のための無限小解析』
p.189	1	遡らせようとする人	遡らせようとする <mark>研究者</mark>
p.189	下から7	「無限小代数学」としての微分積分学	「無限小代数学」, さらには「無限小
			解析学」としての微分積分学
p.203	26	この本では割り算をアダムとイブが・・・	この本ではアダムとイブが・・・

頁	行	誤	正
p.241	17	グロタンディーク (· · · ; 1928-)	グロタンディーク (· · · ; 1928- <mark>2014</mark>)
p.247	22	(「… 進歩をもたらした」のあと)	(ファミリーネームは"ゴ"だが
			ベトナム流に"チャウ"とした).
p.267	10	$N_A=\cdots=142$ なので	$N_A=\cdots=$ 157なので
		$n_A = N_A - 105 = 37$ で $A:37$ 歳	$n_A = N_A - 105 = 52$ で $A:52$ 歳
p.271	1	(答) h: r = 2:1	(答) $h: r = \sqrt{2}: 1$
p.268	14	$2 + 11i = (2 \pm i)^3$	$2 \pm 11i = (2 \pm i)^3$
p.270	9	$\sqrt{2a^3 - x^4} - a^3\sqrt{a^2x}$	$\sqrt{2a^3 - x^4} - a\sqrt[3]{a^2x}$
p.210	<i>J</i>	$a - (ax^3)^{\frac{1}{4}}$	$a - (ax^3)^{\frac{1}{4}}$
p.274	3	$\sum_{k=0}^{\infty} \left\{ \frac{(-1)^{n-1}}{2k-1} \right\} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \pm \cdots$	$\sum_{k=1}^{\infty} \left\{ \frac{(-1)^{k-1}}{2k-1} \right\} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \pm \cdots$
P.2.1		$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
	14	$\alpha\beta = (xs + 2yt) + (xt + ys)\sqrt{2}$	$\alpha\beta = (xs + 2yt) + (xt + ys)\sqrt{2}$
p.286	2~3	名訳『初等数学史』も校訂版が	名訳『初等数学史 上下』も校訂版が
		近く同文庫で再刊される.	同文庫で再刊された.

, p.4 17 行目から 23 行目までの差し替え

訂正前

さらに最近になって \mathbb{F}_1 スキーム理論が登場して「リーマン予想」や「abc 予想」の証明にも有力な手段となりそうな雰囲気である.この \mathbb{F}_1 とは,0 と 1 しかない集合に,0 × 0 = 0,0 × 1 = 1 × 0 = 0,1 × 1 = 1,という「積」だけを導入したものである.一見何の役にも立ちそうもない単純な構造だが,数学的な重要性は見かけだけでは判断できないのである.

訂正後

 \mathbb{F}_2 上のベクトル空間や幾何学は,情報通信の基礎である符号理論において不可欠である. \mathbb{F}_2 は,「体」と呼ばれる代数系の中で最小のものであるが,最近になって仮想的な"一元体" \mathbb{F}_1 を正当化する試みとして \mathbb{F}_1 スキーム理論が登場し,「リーマン予想」や「abc 予想」などにも果敢に挑戦している.現実には存在しない"一元体" \mathbb{F}_1 を強いてイメージするとしたら,1 だけから成る集合に, $1\times 1=1$ という積を導入したもの,と思っていただこう.これこそ一見何の役にも立ちそうもない単純な構造だが,数学的な重要性は見かけだけでは判断できないのである.このように単純な構造から出発して,様々なアイディアを加えて,難しい予想に肉薄しようとする数学者たちの想像力豊かな営みが連綿と続いている.

2 p.107 図 2.45

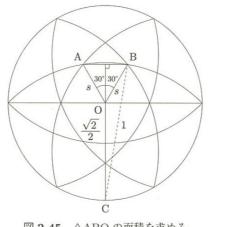


図 2.45 △ABO の面積を求める

図 2.45 △ABO の面積を求める

[1] 訂正前

[2] 訂正後

p.265 《問 2.6》 解答文

小さい2個の正方形のうち,小さい方の一辺をx,大きい方をyとすると,

$$\begin{cases} x^2 + y^2 = 100 & \cdots (1) \\ x = \frac{3}{4}y & \cdots (2) \end{cases}$$

が成り立つ .
$$(1)$$
 を (2) に代入すると , $\frac{9}{16}y^2+y^2=100$ $\frac{25}{16}y^2=100$ より $y^2=64$ よって (答) $y=8,x=6$

以上