目 次

第1章 電気回路とは

1.1	電気回路の位置づけ
1.2	電気回路の基本的考え方2
1.3	線形回路と非線形回路の違い(本書,電気回路で扱う範囲)3
1.4	単位系
	第2章 直流回路
2.1	直流回路の基礎・・・・・・・・・・・・・・・・・・・・・・7
2.2	キルヒホッフの法則
2.3	閉路方程式 ······ 15
2.4	節点方程式 ······ 17
2.5	行列演算による解法
2.6	ブリッジ回路とその平衡条件 27
2.7	電力の定義
	演習問題
	第3章 交流回路の基礎
3.1	正弦波交流
3.2	交流回路素子
3.3	平均値と実効値
3.4	交流電力(有効電力,無効電力,力率) $\cdots \cdots \cdots$
	演習問題

第4章 フェーザ表示と複素数表示

4.1	ノェ ー	49
4.2	複素数	
4.3	複素数表示 ·····	55
4.4	インピーダンスとアドミタンス	58
	演習問題	59
	第5章 交流電力の力率改善と電力量	
5.1	電 力	61
5.2	力率の改善	67
5.3	供給電力最大条件	69
5.4	電力量	
	演習問題	72
	第6章 合成インピーダンスと合成アドミタンス	
6.1	交流回路の直列回路と並列回路	
6.2	交流回路の等価変換	
6.3	回路解析(閉路方程式,節点方程式)	
6.4	ブリッジ回路	
6.5	ベクトル軌跡	
6.6	複素演算法の要点	
6.7	各種回路のインピーダンス	83
	演習問題	86
	第7章 共振回路と共振周波数	
7.1	リアクタンス回路の共振現象	89
7.2	共振回路と共振周波数	90
7.3	Q 値 ······	91
7.4	共振周波数による正規化	92

<u>目 次</u> ix

7.5	共振回路の特性 ······ 93
7.6	共振回路のフィルタへの応用と水晶振動子 97
	演習問題 98
	第8章 回路網の基本的諸法則
8.1	キルヒホッフの法則
8.2	重ね合わせの理
8.3	テブナンの定理 (等価電圧源の定理) ························ 105
8.4	ノートンの定理 (等価電流源の定理) ···································
8.5	帆足-ミルマンの定理・・・・・・108
8.6	相反定理
	演習問題
	第 9 章 3 相交流回路
9.1	対称 3 相交流
9.2	対称交流起電力の結線 · · · · · · · · · · · · · · · · · · ·
9.3	対称 3 相起電力と負荷の接続
9.4	Y 結線の電源と Y 結線の負荷 ······ 122
9.5	Δ 結線の電源と Δ 結線の負荷 $\cdots 124$
9.6	対称 3 相交流の電力
	演習問題
	第 10 章 過渡現象
10.1	定常状態と過渡状態
10.2	直流電圧印加時の RC 回路 ·······132
10.3	直流電圧印加時の RL 回路 ···································
10.4	静電エネルギーと電磁エネルギー · · · · · · · · · · · · · · · · · · ·
10.5	電荷不変則と鎖交磁束不変則
10.6	RLC 直列回路と振動
10.7	交流電源に対する RC および RL 直列回路 ······· 151

	演習問題	155
	第 11 章 磁気結合回路	
11.1	誘導コイルと磁気結合	157
11.2	2 次側開放と短絡	164
11.3	1 次側と 2 次側の直列接続	165
11.4	磁気回路と電気回路との対比	167
11.5	变圧器結合 ·····	170
11.6	変圧器結合回路とその等価回路	171
11.7	理想変圧器とその役割	173
	演習問題	··· 175
	第 12 章 四端子回路	
12.1	四端子回路と行列表示	179
12.2	インピーダンスパラメータとアドミタンスパラメータとの変換…	183
12.3	四端子回路の直列接続と並列接続	184
12.4	F 行列(伝送行列)······	185
12.5	F 行列(伝送行列)の縦続接続	188
12.6	入力インピーダンスと出力インピーダンス	191
12.7	影像インピーダンスと伝達定数	192
	演習問題	196
	第 13 章 周期的非正弦波とフーリエ級数	
13.1	フーリエ級数展開	197
13.2	矩形波のフーリエ級数展開と周波数分解	199
13.3	のこぎり波のフーリエ級数展開と周波数分解	201
13.4	特別な波形のフーリエ級数展開	··· 203
13.5	ひずみ波交流の実効値とひずみ率	206
13.6	非正弦波交流のインピーダンスと電流	209
13.7	ひずみ波交流の電力	211

<u>目 次</u>

хi

	演習問題	
	第 14 章 分布定数回路	
14.1	分布定数回路素子の認識	
14.2	分布定数回路の基礎方程式 $\cdots 216$	
14.3	基本解,伝搬定数と特性インピーダンス,無ひずみ条件 $\cdots 218$	
14.4	基礎方程式の解法	
14.5	反射係数	
14.6	インピーダンス整合 ····································	
	演習問題	
演習問題解答 229		
〔付録〕 数学公式 ····································		
参考図]	
索引	 	