第13章 防火の材料と構造

13・1 材料の燃焼とその生成物

13・1・1 材料の燃焼とその牛成物

(1) 材料の燃焼

燃焼は物質の酸化による発熱反応系であり、その多くは物質中に含まれる炭素および水素との反応である。有機系の材料は高分子物質であり、その燃焼系を図示すると図 13·1 となる。

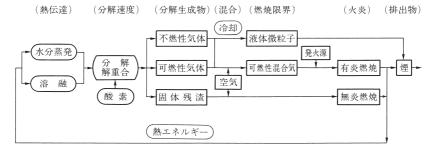


図 13.1 高分子物質の燃焼系プロセス1)

A. 木材の燃焼

木材を加熱すると 230 $\mathbb C$ 付近から重量減少速度が 急激に大きくなる. これは木材の熱分解が盛んにな り、分解ガスの放出速度が大きくなるためである. 木材の引火温度および発火温度は表 $13\cdot 1$ に示すと おり、それぞれ $260^{\mathbb C}$ 前後、 $450^{\mathbb C}$ 前後にある. 熱分 解生成ガスには CO, H_2 や炭化水素などの可熱性ガ スが含まれており、ガスの濃度が燃焼領域濃度に達 したところに口火があると引火し、有炎燃焼を呈す る. 防火工学では $260^{\mathbb C}$ を木材の出火危険温度とし ている.

一般に材料の燃焼は材料の表面から起こるが、例えば木材の周囲の条件が断熱性に富んでいて、加熱が長期間にわたると、徐々に熱分解が進行し、熱分解による発熱が熱分解反応を加速させ、木材の内部温度の上昇を促進させて、やがて発火温度にまで到達して発火に至る可能性がある。この現象を長期加熱による発火という。この場合、図13・2 および図

表 13.1 木材の引火・発火温度2)

樹 種	引火温度 (℃)	発火温度 (℃)
スギ	240	
ヒノキ	253	
ツ ガ	253	445
アカマツ	263	430
カラフトアカマツ	271	
エゾマツ	262	437
トドマツ	253	
ケヤキ	264	426
カツラ	270	455
ブナ	272	
シラカバ	263	438
キ リ	269	
アカガシ		441
ツ ゲ		447
ク リ		460
トネリコ		416
ヤマザクラ		430
ベイマツ		445